

"Electrodos para tratamiento electroquímico de aguas residuales"

MX/a/2014/002238

Descripción de la Tecnología

Se trata de un método para la fabricación de ánodos dimensionalmente estables de Ti/TiO2/RuO2/SnO2-Sb2O5-RuO2 y su utilización en el tratamiento de aguas residuales.

Aplicaciones, usos y beneficios de la tecnología

La utilización de procesos electroquímicos para el tratamiento de aguas residuales está adquiriendo cada día más importancia por su versatilidad, reducido tamaño y capacidad de automatización. Esta invención consiste en el desarrollo de electrodos (ánodos) dimensionalmente estables de Ti/TiO2/RuO2/SnO2-Sb2O5-RuO2 y su utilización en el tratamiento de aguas residuales. El uso de ánodos permite degradar completamente los contaminantes mediante la oxidación total o bien lograr su oxidación parcial a productos más simples.

La incorporación de rutenio permite resolver varios de los problemas habituales en el uso de mezclas de estaño y antimonio para su uso en recubrimientos de electrodos para tratamientos de aguas residuales, tales como un tiempo de vida útil muy corto, poca estabilidad tras un uso continuo, baja estabilidad a cambios de pH y baja resistencia química (lo que puede conducir a la inactivación del electrodo, comúnmente llamado "pasivación"); también permite usar los electrodos para la generación de ácido hipocloroso/hipoclorito (cloro activo) a partir de los iones cloruro disueltos en el medio, y para la generación de oxígeno en medio ácido en presencia de Na2SO4 por medio del mecanismo electroquímico de evolución de oxígeno (generación de O2).

Nivel de madurez de la tecnología

Etapa de desarrollo: prototipo experimental.

Información de mercado

En México está aumentando la inversión para el tratamiento de aguas residuales, tanto por parte del sector público como del sector privado: mientras que en el 2014 se trata solamente el 50% de los efluentes, la meta es llegar al 100% en el 2030.

